Mohr's Circle

Mohr's Circle is a graphical representation of the state of stress at a point in a material. It is used in mechanical engineering, specifically in the field of machine design, to determine principal stresses, maximum shear stresses, and the orientations of these stresses.

Construction of Mohr's Circle

To construct Mohr's Circle, follow these steps:

  1. Identify the Normal and Shear Stresses:

    • Normal stresses (σx\sigma_x and σy\sigma_y)
    • Shear stress (τxy\tau_{xy})
  2. Plot the Points:

    • Plot the points (σx,τxy)(\sigma_x, \tau_{xy}) and (σy,τxy)(\sigma_y, -\tau_{xy}) on the Cartesian plane.
  3. Determine the Center and Radius:

    • The center CC of Mohr's Circle is located at: C=(σx+σy2,0)C = \left( \frac{\sigma_x + \sigma_y}{2}, 0 \right)
    • The radius RR of Mohr's Circle is: R=(σxσy2)2+τxy2R = \sqrt{\left( \frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}
  4. Draw the Circle:

    • With the center CC and radius RR, draw Mohr's Circle.

Principal Stresses

The principal stresses (σ1\sigma_1 and σ2\sigma_2) are found at the intersections of Mohr's Circle with the horizontal axis:

σ1,2=C±R\sigma_{1,2} = C \pm R

Maximum Shear Stress

The maximum shear stress (τmax\tau_{\text{max}}) is the radius of Mohr's Circle:

τmax=R\tau_{\text{max}} = R

Orientation of Principal Stresses

The orientation θp\theta_p of the principal stresses is given by:

tan(2θp)=2τxyσxσy\tan(2\theta_p) = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}

Example

Given:

  • σx=50 MPa\sigma_x = 50 \text{ MPa}
  • σy=30 MPa\sigma_y = 30 \text{ MPa}
  • τxy=20 MPa\tau_{xy} = 20 \text{ MPa}
  1. Center of Mohr's Circle:

    C=(50+302,0)=(40,0)C = \left( \frac{50 + 30}{2}, 0 \right) = (40, 0)
  2. Radius of Mohr's Circle:

    R=(50302)2+202=102+202=100+400=500=22.36 MPaR = \sqrt{\left( \frac{50 - 30}{2} \right)^2 + 20^2} = \sqrt{10^2 + 20^2} = \sqrt{100 + 400} = \sqrt{500} = 22.36 \text{ MPa}
  3. Principal Stresses:

    σ1=40+22.36=62.36 MPa\sigma_1 = 40 + 22.36 = 62.36 \text{ MPa} σ2=4022.36=17.64 MPa\sigma_2 = 40 - 22.36 = 17.64 \text{ MPa}
  4. Maximum Shear Stress:

    τmax=22.36 MPa\tau_{\text{max}} = 22.36 \text{ MPa}

Mohr's Circle provides a clear visual tool to understand the stresses at a point and is an essential concept in the analysis and design of mechanical components.